Uncertainty quantification for hyperbolic systems of conservation laws
نویسنده
چکیده
We review uncertainty quantification (UQ) for hyperbolic systems of conservation (balance) laws. The input uncertainty could be in the initial data, fluxes, coefficients, source terms or boundary conditions. We focus on forward UQ or uncertainty propagation and review deterministic methods such as stochastic Galerkin and stochastic collocation finite volume methods for approximating random (field) entropy solutions. Statistical sampling methods of the Monte Carlo and Multi-level Monte Carlo (MLMC) type, are also described. We present alternative UQ frameworks such as measure valued solutions and statistical solutions.
منابع مشابه
Self-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملMulti-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws
A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variance...
متن کاملUncertainty Quantification for Hyperbolic Conservation Laws with Flux Coefficients Given by Spatiotemporal Random Fields
In this paper hyperbolic partial differential equations with random coefficients are discussed. We consider the challenging problem of flux functions with coefficients modeled by spatiotemporal random fields. Those fields are given by correlated Gaussian random fields in space and Ornstein–Uhlenbeck processes in time. The resulting system of equations consists of a stochastic differential equat...
متن کاملMonte Carlo and multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws
A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variance...
متن کامل